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Abstract–– Understanding the sources of, and quantifying the 

magnitude of, uncertainty can improve decision-making and, 

thereby, make manufacturing systems more efficient. Achieving 

this goal requires knowledge in two separate domains: data 

science and manufacturing.   In this paper, we focus on 

quantifying uncertainty, usually called uncertainty 

quantification (UQ).  More specifically, we propose a 

methodology to perform UQ automatically using Bayesian 

networks (BN) constructed from three types of sources: a 

descriptive system model, physics-based mathematical models, 

and data.  The system model is a high-level model describing the 

system and its parameters; we develop this model using the 

Generic Modeling Environment (GME) platform. Physics-

based models, which are usually in the form of equations, are 

assumed to be in a text format. The data is also assumed to be 

available in a text format.  

    The proposed methodology involves creating a meta-model 

for the Bayesian network using GME and a syntax 

representation for the conditional probability tables/ 

distributions. The actual Bayesian network is an instance model 

of the Bayesian network meta-model. We describe algorithms 

for automated BN construction and UQ analysis, which are 

implemented programmatically using the GME platform.  We 

finally demonstrate the proposed techniques for quantifying the 

uncertainty in two example systems. 

 

Keywords-Bayesian network; meta-model; generic modeling 

environment; uncertainty quantification; automation; 

I.  INTRODUCTION  

    Uncertainty quantification (UQ) involves the estimation of 

the uncertainty in the output quantity of interest of a system 

or a model.  UQ also requires aggregation of errors and 

uncertainty from several sources of aleatory and epistemic 

uncertainty [1]. Bayesian networks (BNs) [2] have become a 

popular approach to perform uncertainty quantification. They 

are being used in several fields such as information retrieval, 

data fusion and engineering decision-making [3], safety 

assessment of software-based systems [4], civil infrastructure 

networks [7] and manufacturing systems [8]. The popularity 

of BNs is increasing for two reasons.  First, they allow the 

integration of various types of uncertainty that combine in 

different ways [9, 10].  Second, they offer a systematic 

approach for uncertainty aggregation and management by 

fusing heterogeneous information available in multiple 

formats (numerical as well as text) from multiple sources.  

BNs rely on an accurate, custom-built model of the 

domain.  The Generic Modeling Environment (GME) [11] is 

a tool for creating high-level descriptive models of objects in 

various application domains. A domain is specified in GME 

by constructing a unique meta-model, which describes the 

various objects, properties, and relationships in that domain. 

The tool can be then used to build models of real-world 

objects in that domain.   

Lechevalier et al., [12] propose the idea of using domain-

specific modeling languages and tools to bridge the gap 

between the modeling and analytics procedures in the 

manufacturing domain. The key idea is to obtain analytical 

models from the domain-specific manufacturing system 

models, also called instance models.  

This paper proposes a method to automatically generate a 

BN from instance models, physics-based models and 

available data on the system.  Our method to automate the 

construction of a BN and UQ analysis is based on a Bayesian 

network meta-model, which is explained in Section 3.  

 The remainder of this paper is organized as follows. 

Section II provides an introduction to BNs, techniques for BN 

construction, BN learning algorithms and meta-modeling. 

Section III describes the proposed methodology and 

algorithms for BN construction and UQ analysis. Two 

examples – a mathematical example and an injection molding 

example are used to demonstrate the proposed methodologies 

in Section IV. Conclusions are provided in Section V. 

II. BACKGROUND 

A. Bayesian networks 

     A Bayesian network is a probabilistic, acyclic, graphical 

model, consisting of nodes and directed arcs.  The nodes 

represent the variables in the system. The arcs represent 
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dependency relationships between variables, which are 

quantified by conditional probability distributions. Nodes 

that have a directed edge pointing towards a node n are called 

the ‘parent nodes’ of node n. Mathematically, a Bayesian 

network is the joint probability distribution of a set of 

variables 𝑿 = (𝑋1, 𝑋2 … 𝑋𝑛) represented as  

 
𝑃𝑟𝐵(𝑿) =  ∏ 𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖

)

𝑛

𝑖=1

 (1) 

where Π𝑋𝑖
 represents the set of parent nodes of 𝑋𝑖  and 

𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖
)  represents the conditional probability 

distribution of 𝑋𝑖, given its parent nodes. If 𝑋𝑖 has no parent 

nodes, then 𝑃𝑟𝐵(𝑋𝑖|Π𝑋𝑖
) represents the marginal probability 

distribution of 𝑋𝑖. 

B. Techniques for Bayesian network construction 

    The techniques for constructing a Bayesian Network can 

be broadly divided into three types: physics-based, data-

driven, and hybrid approaches. The physics-based approach 

relies on the availability of a set of mathematical equations 

that represent all the relevant relationships between the 

system variables.  The data-driven approach assumes that no 

such equations exist and that ample data about the system is 

available. This data is provided as an input to BN learning 

algorithms that can “learn” the structure of the network.  

In some cases, mathematical equations are available only 

for some segments of the system and data is available for the 

other segments. In such a scenario, a hybrid approach is 

taken, where physics-based equations might be used to model 

some dependencies in the BN whereas the remaining 

dependencies are learned from the available data. The overall 

Bayesian network is constructed in two stages – (1) a partial 

Bayesian network is obtained using the available physics-

based models, and (2) the Bayesian network constructed in 

step 1 is used as a prior, denoted as Pr (𝐺) in Equation (4), for 

learning the remaining dependencies using the Bayesian 

network learning algorithms. 

C. Bayesian network learning algorithms 

    The goal in using learning algorithms is to identify the 

Bayesian network structure that best describes the available 

data. The task of learning consists of two steps: structure 

learning and parameter learning.  Structure learning involves 

finding a graphical structure that best represents the 

dependency between nodes based on available data. 

Parameter learning involves quantifying the dependencies 

among several nodes by estimating the parameters of the 

associated conditional probability distributions [13].  

    The structure learning algorithms can be broadly divided 

into three categories: constraint-based, score-based, and 

hybrid. Constraint-based algorithms use conditional 

independence tests to learn the structure of the BN. Mutual 

information test is a commonly used conditional 

independence test. The expressions for mutual information 

( 𝐼𝑋,𝑌 ) in the case of discrete variables and continuous 

variables are given in Equations (2) and (3), respectively, as 

 

 
𝐼𝑋,𝑌 =  ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑋𝑌

 (2) 

 
𝐼𝑋,𝑌 =  ∫ ∫ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑋𝑌

 (3) 

 

where 𝑝(𝑥, 𝑦) represent the joint probability distribution of 𝑋 

and 𝑌, 𝑝(𝑥) and 𝑝(𝑦) represent the marginal distributions of 

𝑋 and 𝑌, respectively.  

In score-based learning, every possible BN structure is 

assigned a network score based on 1) the goodness-of-fit for 

available data and 2) a set of heuristic optimization 

techniques that obtain the structure that maximizes the score. 

A commonly used scoring metric is Bayesian Dirichlet 

equivalence (BDe). The BDe based scoring criterion 

maximizes the posterior probability of a network-structure 

given data and is given as 

 

Pr(𝐺|𝐷)  ∝ Pr(𝐷|𝐺) Pr(𝐺)

= Pr(𝐺) ∫ Pr(𝐷|𝐺, Θ) Pr(𝛩|𝐺) 𝑑Θ 
(4) 

 

where 𝐺, 𝐷 represent the structure of the Bayesian network 

and available data, respectively. 

    Hybrid algorithms employ both conditional independence 

tests and network scores for learning the BN structure. The 

conditional independence tests are used to reduce the space 

of possible BN structures whereas score-based methods are 

used to obtain the optimal structure among them.  

    Parameter-learning algorithms estimate the parameters of 

the various conditional probability distributions from 

available data using the maximum-likelihood approach. 

D. Meta-modeling 

 Modeling tools have become essential to the design and 

analysis of complex systems. Using such tools involves a 

process and a paradigm. The modeling process conforms to a 

set of rules that minimizes errors and facilitates the 

presentation and communication of models. The modeling 

paradigm or the modeling language, such as GME, contains 

all syntactic, semantic and presentation information 

regarding a domain, and represents the rules that govern the 

construction of models.   

    In recent years, the notion of meta-modeling has been 

added to process and paradigm.  The outcome of the meta-

modeling task is a meta-model that encodes all the concepts 

and rules of the modeling paradigm.  GME, the modeling 

language we used, offers a meta-modeling language called 

MetaGME, which is based on Unified Modeling Language 

(UML) Class Diagrams [14], to create domain-specific meta-

models. The meta-models described in this paper were built 

using MetaGME.  



1410

   

 

 

    In related work, Nannapaneni et al., [15] present a 

technique for using domain-specific models for analytics. 

This technique uses the system model to extract the reliability 

block diagram using the concepts of functional 

decomposition and function-component association for 

reliability analysis. Aguila and Sagrado [16] developed a 

Bayesian network meta-model that they referred to as BayNet 

and which has different modules for representation of 

Bayesian network structure (BayNet structure) and inference 

(BayNet Reasoning). BayNet allows for modeling of discrete 

variables only, whereas this paper seeks to develop a 

generalized methodology to handle discrete, continuous and 

functional nodes.  

 

III. METHODOLOGY 

Our method for using Bayesian networks for uncertainty 

quantification can be divided into two steps 1) Automated BN 

construction using available models and data, and 2) UQ 

analysis using the constructed BN. 

A. Automated BN construction using available models and 

data 

     As stated in Section II, a BN can be constructed using 

mathematical models or data or a combination of both. We 

consider two construction cases in this paper: one using 

physics-based models and one using data. It is 

straightforward to construct a BN manually when models are 

available. This paper, however, focuses on the automated 

generation of a BN. 

    The variables required for construction of a BN can be 

obtained from the manufacturing system description.  We 

incorporate this description into a domain-specific model in 

GME, which, as noted, is as an instance of the corresponding 

meta-model developed using MetaGME. The details of 

constructing a generic meta-model for manufacturing 

systems are not discussed here, but an illustrative example is 

provided in Section IV. The system variables in the 

descriptive system model are used as a basis for identifying 

the nodes and their preliminary ordering for the BN that will 

be generated. Data associated with the system variables is 

then used to obtain the BN representing the system. 

 

1) Automated BN construction using physics-based models 

    Physics-based models are assumed to be available as 

equations in a text (.txt) file. The models could be present in 

any random order. The algorithm presented below will order 

the equations and build a BN from them. An illustrative 

example is provided in Section IV. 

 

1) Create two lists, 𝑥𝐿  and 𝑥𝑅 to store the variables to 

the left and right of the equality sign.  

2) Create a dictionary object 𝐷 with the left hand side 

(LHS) variables of an equation as the key and the 

list containing all the right hand side (RHS) 

variables of that equation as the value. 

3) Since a Bayesian network is a layered structure, the 

variables in the top layer, also called root variables, 

are given by 𝑥𝑅  – (𝑥𝑅  ∩  𝑥𝐿). 

4) The second layer comprises all variables that can be 

defined by a subset of the top-level variables. This 

can be achieved by selecting the keys whose values 

are a subset of the first layer variables. 

5) Similarly, every other layer consists of variables that 

can be defined by the variables in the above layers. 

The procedure specified in step 4, i.e., looking into 

the dictionary 𝐷, is used to select all the variables in 

the current layer. 

6) Step 5 is repeated several times until all the variables 

in the system are defined. 

 

2) Automated BN construction using available data 

    When physics-based models are not available, we propose 

to use the system model and the data associated with the 

process variables in the system model to construct the BN. 

Apart from data, the system model may provide qualitative 

information about the dependencies between several 

variables, which can be used to improve BN construction 

from data. The Bayesian network learning algorithm we used 

is the scored-based method described in Wilczyński and 

Dojer [17]. The BDe criterion (Section II.C) is used as a 

scoring metric. A key features of this algorithm is that it can 

handle both discrete and continuous variables, which are 

often present in manufacturing scenarios. The continuous 

variables are handled by discretizing them into two-

component, Gaussian-mixture models. A linear, Gaussian 

conditional probability distribution (CPD) with a constant 

mean and unknown variance is fit for each continuous node.  

Note that the mean of the CPD is a linear combination of 

parent nodes. 

      The constructed Bayesian network can be validated using 

model validation techniques [18] such as model-reliability 

metric, area-metric etc. The available dataset can be divided 

into a training and a test data; the BN can be constructed with 

the training test and validated with the test set. 

B. Uncertainty quantification using the Bayesian network 

     The BN-based UQ methodology described in [8] is used 

in this paper. The important steps are mentioned below for 

the sake of completeness. UQ analysis using a BN can be 

divided into three tasks: 1) Construction of a BN (Section 

II.B), 2) Model calibration, where the unknown parameters 

are estimated using any observation data, and 3) Forward 

uncertainty propagation, where the posterior distribution of 

the output quantity of interest is constructed using posterior 

distributions of estimated model parameters.  

    The procedure for performing automated UQ analysis 

using a BN can be divided into three steps.  The first is to 

transform the BN (constructed using III.A) into an instance 

model in GME.  The second is to implement the above UQ 

methodology for the BN meta-model on the GME platform.  
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The third is to apply the UQ methodology to the BN instance 

model.  

    Using the instance model of the BN, the UQ analysis 

methodology, and any new data, uncertainty quantification 

can be carried out for the BN constructed in Section III.A.1, 

in an automated manner. Figure 1 shows the proposed 

methodology for automated UQ analysis. 

 

 
Figure 1. Methodology for automated UQ analysis 

 

1) Bayesian network meta-model 

   Figure 2 shows the BN meta-model created using GME.  

 

Description of the meta-model: 

     In the BN meta-model (Figure 2), ‘BayesianNetwork’ 

represents the root component, and ‘Node’ represents any 

node in the Bayesian network. There can be three types of 

nodes in the Bayesian network: ‘DiscreteNode’, 

‘ContinuousNode’, and ‘FunctionalNode’. A discrete node 

represents a variable that has a finite number of states. 

Similarly, a continuous node represents a variable that is 

continuous. A functional node represents a variable, which 

can be known deterministically when the values of its parent 

nodes are known. Functional nodes are used to represent any 

functional relationships that may be available between nodes 

in a Bayesian network. 

A ‘Node’ is specified by an inheritance relationship 

denoted by the triangle icon between the Node and its 

subtypes. In a BN, one node is connected to another forming 

an edge; this is represented in the meta-model using the ‘src’ 

(source) and ‘dst’ (destination) tags at the ‘Node’ component 

and by the ‘Edge’ component, which is a connection type of 

component.  

 

  
Figure 2. Meta-model for the Bayesian network 

 

    The next step in defining the meta-model is to provide a 

set of required attributes for each of the classes. The most 

important attributes in a BN are the node names and the 

CPDs/CPTs. Additional attributes that are required for our 

UQ analysis are described below. The ‘BayesianNetwork’ 

component is associated with two attributes – ‘Filelocation’ 

and ‘Information’. The ‘Information’ attribute is an 

‘enumeration’ type and can take only two values – ‘Models’ 

and ‘Data’. The ‘Filelocation’ attribute refers to the location 

of the file that contains either models or data. The attributes 

that are common to all three types of nodes such as ‘Name’, 

‘Parents’, and ‘Postprocessing’ are associated with the 

‘Node’ component. All the parent nodes associated with a 

node are provided in ‘Parents’ attribute. ‘Postprocessing’ is a 

Boolean variable, that specifies whether or not the variable 

requires post processing analysis (posterior distribution 

analysis). Apart from the common attributes, each type of 

node has a different set of attributes.  

   Additional attributes for a discrete node include 

‘RootNode’, ‘CPT’, ‘AllStates’ and ‘Observations’. A node 

with no incoming edges (i.e., with no parent nodes) is called 

a ‘root node’. The Boolean attribute ‘RootNode’ is provided 

to identify root nodes. Only Continuous and Discrete nodes 

in a BN can be root nodes.  All the possible finite states of the 

discrete variables are provided in the ‘AllStates’ attribute. 

Any new observational data is provided with the 

‘Observations’ attribute. The conditional probability table for 

the discrete variable or marginal probability table (for root 

nodes) is defined in the ‘CPT’ attribute. For illustration, 

Table I defines a discrete parent node ‘A’ with three possible 

states ‘A1’,’A2’,’A3’ and marginal probabilities of 0.1,0.6,0.3 

respectively. Other attributes such as ‘Observations’ and 

‘Postprocessing’ are not mentioned below because the goal 

here is to demonstrate the definition of a CPT.  

 
TABLE I. REPRESENTATION OF A ROOT DISCRETE NODE 

Attribute  Value 
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Name A 

RootNode True 

Parents  

AllStates A1, A2, A3 

CPT 0.1,0.6,0.3 

 

 Note that, when defining the marginal probabilities, the order 

of probabilities should be the same as the order of states, 

which is defined in ‘AllStates’ attribute. Since A is a root 

node, it has no associated parent nodes; therefore, the value 

corresponding to Parents in Table I is empty. Next, consider 

a discrete node with discrete parents. Let A and B be the two 

parent nodes each with two states, A = {A1, A2} and B = {B1, 

B2}. Let C represent the child node with two states, C = {C1, 

C2}. The conditional probability table is given in Table II. 

 
TABLE II. CPT OF A DISCRETE NODE WITH DISCRETE PARENTS 

C | A, B A = A1, 

B = B1 

A = A1, 

B = B2 

A = A2, 

B = B1 

A = A2, 

B = B2 

C = C1 0.6 0.7 0.2 0.4 

C  = C2 0.4 0.3 0.8 0.6 

 

 The case when the discrete child node has continuous parent 

nodes or a combination of continuous and discrete parent 

nodes is discussed below. The key ideas in dealing with 

continuous parent nodes involve discretizing their ranges and 

defining a conditional probability for the child node in each 

of the ranges. Let A, B represent a discrete and a continuous 

parent node of a discrete child node C. Assume A has two 

states, A = {A1, A2} and B follows a uniform distribution 

between 10 and 20. Let the range of B be divided into two 

uniform intervals; therefore, B can be considered as a discrete 

variable. The corresponding conditional probability table is 

given as shown in Table III 

 
TABLE III. CPT OF A DISCRETE NODE WITH DISCRETE AND CONTINUOUS 

PARENTS 

C | A, B A = A1, B = 

[10,15] 

A = A1, B = 

(15,20] 

A = A2, B = 

[10,15] 

A = A2, B 

= (15,20] 

C = C1 0.6 0.7 0.2 0.4 

C  = C2 0.4 0.3 0.8 0.6 

 

In Table III, the squared brackets also include the equality 

whereas the parentheses do not. If B = [10, 15], then 10 <= B 

<= 15 whereas B = (15, 20] represents 15 < B <= 20. The 

representation of C is shown in Table IV. 

 
TABLE IV. REPRESENTATION OF A CHILD DISCRETE NODE  

Attribute Both parents are 

discrete 

One discrete and one 

continuous 

Name C C 

Root Node False False 

Parents A,B A,B 

AllStates C1,C2 C1, C2 

CPT A1,B1 : 0.6,0.4; A1,B2 : 
0.7,0.3;A2,B1 : 0.2,0.8; 

A2,B2 : 0.4,0.6 

A1, [10,15] : 0.6,0.4; A1, 
(15,20] : 0.7,0.3;  A2, 

[10,15] : 0.2,0.8; A2, (15,20] 

: 0.4,0.6 

 

   Consider the case when B is represented using a Normal 

distribution and divided into two disjoint intervals B <= 15 

and B > 15 – represented as (..15] and (15..) respectively. The 

same representation can be extended to the case when all the 

parent nodes are continuous. Each continuous node is 

discretized and treated as a discrete variable; a similar 

procedure can be followed as for the case of a discrete node 

with all continuous parents.  

    The attributes for the continuous node include ‘RootNode’, 

‘CPD’ and ‘Observations’. The definitions for ‘RootNode’ 

and ‘Observations’ are identical to their discrete counterparts. 

’CPD’ represents the conditional probability distribution or 

marginal probability distribution (for root nodes). For 

illustration, consider a normally distributed variable ‘A’ with 

parameters (mean, standard deviation) 10 and 1. Attributes 

such as ‘Postprocessing’ and ‘Observations’ are not 

mentioned below. Representation of ‘A’ is given in Table V. 

 
TABLE V. REPRESENTATION OF A ROOT CONTINUOUS NODE 

Attribute Value 

Name A 

RootNode True 

Parents  

CPD Normal(10,1) 

 

Next, different combinations of parent nodes, A and B, for a 

continuous child node C are considered and the 

corresponding representations are given in Table VI. 

 
TABLE VI. REPRESENTATION OF A CHILD CONTINUOUS NODE 

Attribute Both parents are 

discrete 

One discrete  

and one 

continuous 

Both 

parents are 

continuous 

Name C C C 

RootNode False False False 

Parents A(A1,A2), B(B1,B2) A (A1,A2), 
B(continuous) 

A,B (Both 
continuous) 

CPD A1,B1 : Normal(5,1); 

A1,B2 : 
Uniform(10,14); A2,B1 

: Normal(10,2); A2,B2 : 

Uniform(12,17) 

A1:Normal(2*

B,1);A2: 
Uniform(B-2, 

B+2) 

Normal(A+

2*B, 1) 

     After discrete and continuous nodes, functional nodes are 

considered. As stated earlier, functional nodes are 

deterministically known when conditioned on all the parent 

nodes, either discrete or continuous. Functional nodes have 

only one additional attribute called ‘Equation’. The 

expression connecting the parent nodes to the child node is 

given here. If A and B represent the continuous parent nodes, 

for a functional node C, and if C = A + 2*B, then the variable 

is represented as shown in Table VII. 

 
TABLE VII. REPRESENTATION OF A FUNCTIONAL NODE WITH CONTINUOUS 

PARENTS 

Attribute  Value 

Name C 
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Parents A,B 

Equation A + 2*B 

 

When a child node has a functional node as a parent node, the 

functional node can be treated in the same manner as a 

continuous node for CPD/CPT representation. If a functional 

node has finite states, it can be modeled as a discrete node 

where one particular state has a conditional probability of 1 

and all the other states have zero as their conditional 

probabilities. A functional node may also be modeled as a 

continuous node with zero variance. However, some 

Bayesian network packages do not allow modeling a variable 

with zero variance. In such cases, a functional node can be 

defined as continuous node with a very small variance. To 

avoid confusion, we have chosen to model functional nodes 

explicitly. 

 

2)  Algorithms for automated UQ analysis 

    Two algorithms are implemented for the BN meta-model:  

1) to construct the instance model of the BN, and 2) to 

perform UQ analysis.  

    The first algorithm constructs the BN using available 

physics-based models or data. In case physics-based models 

are available, the algorithm presented in Section III.A.1 is 

used to construct the BN. If data is available, the BN is learnt 

using BNFinder package in Python, as stated in Section 

III.A.2. The BN is constructed in Python and stored as a 

JSON representation. The JSON file is then automatically 

converted into a GME instance model. The user can make 

any changes to the BN instance model (such as adding 

observations or selecting variables for post processing, 

deleting some nodes), directly using the GME interface. 

When all the required changes are made to the BN instance 

model, the second algorithm is executed for automated BN 

analysis.  

    The UQ analysis is carried out using PyMC [19] package 

in Python. We have implemented a program that reads the 

BN instance model and creates a JSON file to represent the 

data corresponding to all the nodes in the BN. A Python script 

then takes the JSON file as input and creates a BN model to 

carry out UQ analysis. Markov Chain Monte Carlo (MCMC) 

sampling, using Metropolis-Hastings algorithm [20], is 

carried out to construct the posterior probability distributions 

of several variables in the BN.  

IV. ILLUSTRATIVE EXAMPLES 

1)  UQ analysis using data 

    A mathematical example is used to demonstrate the 

proposed methodologies for automated UQ analysis using 

data. In this example, all possible combinations of discrete 

and continuous nodes are available. Figure 3 shows a simple 

meta-model for manufacturing processes, created using 

GME. An instance of this meta-model (shown in Figure 4) is 

used in this example. The model consists of three individual 

processes namely ‘Process1’, ’Process2’ and ‘Process3’.  

      
Figure 3. Mathematical example: Meta-model 

 

 
Figure 4. Mathematical example: Instance-model 

 

    Using the conditional probability distributions in Table 

VIII, we created a synthetic dataset of 500 samples to use as 

inputs to the BN learning algorithm. We can see from the 

model that ‘Process1’, ‘Process2’, and ‘Process3’ occur in 

that sequential order. Assume that all the variables measured 

for a process are independent of each other. Therefore, from 

the model, we can deduce that ‘D1’,’D2’ must be the root 

nodes in the Bayesian network. The variables ‘C1’, ’C2’, and 

’D3’ will be in the second layer of the BN and each of them 

could have ‘D1’, ’D2’, or both as parent nodes. Similarly, 

‘C3’, ’D4’, and ‘C4’ will be in the third layer and each of 

them can be expressed using a subset of the variables 

associated with Process2 as parent nodes. Adding such 

qualitative information makes the learning process faster and 

more accurate. The statistical results are given in Table IX.  

    The topology of the learnt BN matches that of the true BN; 

this can be observed by comparing the parent nodes of each 

child node from the true and learnt CPDs (Tables VIII and 

IX), although there are minor differences in the conditional 

probability distributions. The differences can be attributed to 

the assumptions made in the learning process (linear 

Gaussian CPD) and to the amount of data available for BN 

learning. As the amount of data increases, the accuracy of the 

conditional probability distributions can be improved. As 

stated in Section III.B.2, two model interpreters are created 

to perform automated UQ analysis. Using the first interpreter, 

a GME instance model of the constructed BN is created 

(Figure 5). In the instance model, observations are added for 

nodes ‘D4’,’C1’, and ‘C4’. Using the observation data, the 

posterior distributions of root nodes‘D1’ and’D2’ are 

obtained. The statistics of the prior and posterior distributions 

are provided in Table X.   
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TABLE X. MATHEMATICAL EXAMPLE: PRIOR AND POSTERIOR 

PROBABILITIES OF CALIBRATION PARAMETERS 

Variable True 

value 

Prior 

probability 

Posterior 

probability 

D1 0 0.3,0.7 1,0 

D2 1 0.6,0.3,0.1 0.38,0.62,0 

 

 
Figure 5. Mathematical example: BN instance model 

 

2) UQ analysis using physics-based models 

    An injection molding process is used to demonstrate 

automated BN construction and UQ analysis using physics-

based models. The injection molding process can be 

considered as a combination of three sub-processes:  melting 

of the polymer, injection into the mold, and cooling to form 

the part. Each sub-process is associated with a set of 

parameters (input variables as well as model parameters). The 

goal is to estimate the energy consumption per part in the 

injection molding process. Physics-based models are 

assumed to be available for energy consumption (Equations 

5 to 11). 

 

𝑉𝑠ℎ𝑜𝑡 = 𝑉𝑝𝑎𝑟𝑡(1 + 𝜖 + Δ) (5) 

𝑃𝑚𝑒𝑙𝑡 = 𝜌 × 𝑄𝑎𝑣𝑔  ×  𝐶𝑝  × (𝑇𝑖𝑛𝑗 − 𝑇𝑝𝑜𝑙) + 𝜌 

× 𝑄𝑎𝑣𝑔  × 𝐻𝑓  
(6) 

𝐸𝑚𝑒𝑙𝑡 =
𝑃𝑚𝑒𝑙𝑡 × 𝑉𝑠ℎ𝑜𝑡

2 × 𝑄𝑎𝑣𝑔

 (7) 

𝐸𝑖𝑛𝑗 =  𝑃𝑖𝑛𝑗 × 𝑉𝑝𝑎𝑟𝑡 (8) 

𝐸𝑐𝑜𝑜𝑙 =
𝜌 × 𝑉𝑝𝑎𝑟𝑡  × [𝐶𝑝 × (𝑇𝑖𝑛𝑗 − 𝑇𝑒𝑗)]

𝐶𝑂𝑃
 (9) 

𝐸𝑟𝑒𝑠𝑒𝑡 = 0.25(𝐸𝑖𝑛𝑗 + 𝐸𝑐𝑜𝑜𝑙 + 𝐸𝑚𝑒𝑙𝑡) (10) 

𝐸𝑝𝑎𝑟𝑡 = [(
0.75 × 𝐸𝑚𝑒𝑙𝑡 + 𝐸𝑖𝑛𝑗

𝜂𝑖𝑛𝑗

+
𝐸𝑟𝑒𝑠𝑒𝑡

𝜂𝑟𝑒𝑠𝑒𝑡

+
𝐸𝑐𝑜𝑜𝑙

𝜂𝑐𝑜𝑜𝑙

+
0.25 × 𝐸𝑚𝑒𝑙𝑡

𝜂ℎ𝑒𝑎𝑡𝑒𝑟

) ×
(1 + 𝜖 + Δ)

𝜂𝑚𝑎𝑐ℎ𝑖𝑛𝑒

+ 𝑃𝑏 × 𝑡𝑐𝑦𝑐𝑙𝑒] 

(11) 

 

In the above set of equations, 𝑉𝑠ℎ𝑜𝑡 , 𝑉𝑝𝑎𝑟𝑡 , 𝜖, Δ  represent the 

volume of a shot, volume of a part, shrinkage and buffer 

respectively. 𝑃𝑚𝑒𝑙𝑡 , 𝜌, 𝑄𝑎𝑣𝑔 , 𝐶𝑝, 𝑇𝑖𝑛𝑗 , 𝑇𝑝𝑜𝑙 , 𝑇𝑒𝑗 , 𝐻𝑓  represent 

the power consumption for melting, density of polymer, 

average flow rate, heat capacity, injection temperature, 

polymer temperature, ejection temperature, heat of fusion 

respectively. 𝐸𝑚𝑒𝑙𝑡 , 𝐸𝑖𝑛𝑗 , 𝐸𝑐𝑜𝑜𝑙 , 𝐸𝑝𝑎𝑟𝑡  represent energy 

consumption for melting, injection, cooling and total energy 

for a part respectively. More details are available in [21].  

    A BN instance model (Figure 6) is created by executing 

the interpreter for BN construction, as stated in Section III. 

For illustration, all the efficiency coefficients (𝜂, 𝐶𝑂𝑃) are 

assumed to be 0.7 and 𝑃𝑏 , which is the power consumed by 

the basic units, is assumed to be zero. The statistics of 

variables are provided in Table XI. 

 
TABLE XI. INJECTION MOLDING: VARIABLES AND THEIR VALUES 

Parameter Values Parameter Values 

𝑉𝑝𝑎𝑟𝑡(𝑚3) 0.002048 𝐻𝑓(𝑘𝐽/𝑘𝑔) 240 

𝜖 0.0185 𝜌(𝑘𝑔/𝑚3) 𝑈(960,990) 

Δ 0.01 𝑇𝑖𝑛𝑗(𝑜𝐶) 215 

𝑇𝑒𝑗  (𝑜𝐶) 𝑈(45,60) 𝐶𝑝(𝐽/(𝑘𝑔𝐾)) 2260 

𝑇𝑝𝑜𝑙 (
𝑜𝐶) 49 𝑃𝑖𝑛𝑗(𝑀𝑃𝑎) 93 

 

All the parameters with constant values can be removed from 

the BN instance model. Observation data is assumed to be 

available on the total energy consumption  (𝐸𝑝𝑎𝑟𝑡) , and 

ejection temperature (𝑇𝑒𝑗). The parameters to be calibrated 

are the density of the polymer (true value = 985), and ejection 

temperature (true value = 55). The prior distributions 

associated with the calibration parameters are given in Table 

XI. The measurement errors associated with temperature 

measurements and energy are assumed to be normal 

distributions with zero mean and standard deviations of 2𝑜𝐶 

and 100 kJ respectively. A normal distribution is typically 

assumed for measurement errors because it is symmetric 

about zero; therefore positive and negative errors are equally 

probable and small errors are more likely to occur than large 

errors in a controlled experiment [22]. The modified BN 

instance model (BN instance model after removing all 

constants) is then used to carry out UQ analysis. The UQ 

analysis can be carried out by executing the second model 

interpreter. The prior and posterior distributions of the 

calibration parameters are provided in Figure 7. 

V. CONCLUSION 

    This paper proposed a methodology for automated 

Bayesian network construction and uncertainty 

quantification analysis. The BN is constructed by fusing the 

information from available system models, physics-based 

models, and collected data. The system model is assumed to 

be available as a domain-specific model in the GME 

platform. Physics-based models are assumed to be available 

as equations in a text format.  
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A meta-model for the BN is developed along with a 

syntactic representation of the conditional probability 

distribution/tables in GME. The meta-model is created such 

that the BN can have discrete, continuous, and functional 

nodes. On the meta-model, two model interpreters (also 

called model translators) are written to construct the BN and 

to perform uncertainty quantification analysis. An algorithm 

is presented to generate the BN from a set of physics-based 

models. In the absence of physics-based models, the BN is 

constructed using BN learning algorithms.  

The constructed BN is represented as an instance model of 

the BN meta-model. The instance model can be modified to 

include any further information about the BN such as 

observation data and post-processing information. Using the 

instance model, the second program constructs a Bayesian 

network for UQ analysis using PyMC package in Python.  

The proposed method is illustrated using two examples – an 

injection molding process and a mathematical example. 

    Automated UQ analysis using physics-based models is 

demonstrated for injection molding and a mathematical 

example is used to demonstrate UQ analysis using data. The 

injection molding example consists of only functional nodes 

and continuous nodes, whereas the mathematical example is 

created such that it has all combinations of discrete and 

continuous variables.  

    The goal of this work is to assist manufacturers in 

performing uncertainty analysis using automated tools, 

without requiring expertise in UQ methods and UQ-specific 

tools. This will help manufacturers make better use of their 

data analytics capabilities by allowing them to give proper 

consideration to uncertainty. 

    Future work is needed to develop algorithms for 

automation of analysis such as sensitivity analysis, 

verification and validation. Also, algorithms for the 

construction of dynamic Bayesian networks (for tracking 

system evolution over time), and diagnostic and prognostic 

analysis need to be investigated. 
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TABLE VIII. MATHEMATICAL EXAMPLE: CPD/CPT OF VARIABLES USED FOR SYNTHETIC DATASET GENERATION 

Variable CPT/CPD 

D1 0.3,0.7 

D2 0.6,0.3,0.1 

C1 | D1 Normal(10 + 4*D1,2) 

C2 | D2 Normal(6+2*D22,1) 

C4| C2 Normal(0.1*C22 + 0.6*C2 + 1, 2) 

C3 | C2, D3 D3 = 0, Normal(0.15*C22,2) D3 = 1, Normal(2*C2,1) 

D3|D1,D2 
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) 

0,1,0.9 0.3,0.7 0.4,0.6 0.6,0.4 0.8,0.2 0.9,0.1 

D4|D3,C2 
(0, C2<9) (0,9<C2<11) (0, C2>11) (1, C2<9) (1,9<C2<11) (1, C2>11) 

0.4,0.6 0.3,0.7 0.6,0.4 0.7,0.3 0.8,0.2 0.3,0.7 

 
TABLE IX. MATHEMATICAL EXAMPLE: CPD/CPT OF VARIABLES IN THE LEARNT BN 

Variable CPT/CPD 

D1 0.32,0.68 

D2 0.6,0.31,0.09 

C1 | D1 D1=0, Normal(9.68,1.87) D1=1, Normal(14.04,1.93) 

C2 | D2 D2=0, Normal(6.03,1) D2=1, Normal(7.97,1)  D2=2, Normal(14,0.84) 

C4| C2 Normal(2.46*C2 -6.63,2.28) 

C3 | C2, D3 D3 = 0, Normal(5.83*C2-25.2,9.58) D3 = 1, Normal(2*C2+0.12,1.37) 

D3|D1,D2 
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) 

0.09,0.91 0.33,0.67 0.25,0.75 0.56,0.44 0.79,0.21 0.88,0.12 

D4|D3,C2 
(0, C2<10.3) (0, C2>10.3) (1, C2<10.3) (1, C2>10.3) 

0.35,0.65 0.67,0.33 0.72,0.28 0.31,0.69 

 

 
Figure 6. Injection molding example: BN instance model using physics-based models 
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(a) (b) 

Figure 7. Injection molding example: Prior and posterior distributions of (a) Density and (b) Ejection temperature 

 


